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1. Introduction

In 2011, Azam et al. [1] introduced the concept of complex valued metric space as a generalization of metric space and proved
some fixed point results for a pair of mappings for a contraction condition satisfying a rational expression. After this, many
authors have generalized the complex valued metric space in various directions. In 2013, K. Rao et al. [5] introduced complex
valued b-metric space as a generalization of complex valued metric space. In 2014, Nabil M. Mlaiki [11] introduced complex
valued S-metric space and proved some common fixed point results. Then in 2017, N. Priyobarta et al. [10] extended complex
valued S-metric space to complex valued Sp-metric space and proved some fixed point results including a common fixed point
result as a generalization of a result by Nabil M. Mlaiki [11]. Recently K. Anthony Singh and M. R. Singh [4] introduced complex
valued Ay-metric space as further generalization of complex valued metric space and proved some fixed point results. Complex
valued Ap-metric space can also be looked upon as an extension of Ap,-metric space introduced by Manoj Ughade et al. [7].

The aim of this paper is to present a common fixed point result in complex valued Ap-metric space. Our result (with some
modifications) generalizes a result of N. Priyobarta et al. [10].

2. Preliminaries

In this section, we recall some properties of A-metric space, Ap,-metric space, complex valued metric space, complex valued b-
metric space, complex valued S-metric space, complex valued Sp-metric space and complex valued Ap-metric space.

Definition 2.1. [8] Let X be a honempty set. A function A : X "— [0,0) is called an A-metric on X if forany xi, a € X,i=1,2, ...,
n, the following conditions hold:

(A1)  A(X1, X2, X3, . . ., Xn-1, Xn) >0,

(A2) A(X1, X2, X3, . . ., Xn-1, Xn) =0 ifand only if Xa=Xo=Xs= ... =Xp-1= Xp,
(A3) A(Xl, X2, X3, . . ., Xn-1, Xn) < [A(Xl, X1, X1, + .« vy (Xl)n-l, a)

+ A(Xz, X2, X2, o vy (Xz)n.l, a)

+ A(X3, X3, X3, . . ., (Xa)n-1, @)

+ A(Xn—l, Xn-1y Xn-1y « « (Xn»l)n-L a)

+ A(Xn, Xn, Xn, -+, (Xn)n-1, )]

The pair (X, A) is called an A-metric space.
Definition 2.2. [7] Let X be a nonempty set and » > I be a given real number. A function A: X " — [0, =) is called an A, —metric

on X if forany xj,a€ X,i=1,2, ..., n, the following conditions hold:
(Apl)  A(X1, X2, X3, . . ., Xn-1, Xn) >0,
(AbZ) A(Xln X2, X3y + « + 5 Xn-1, Xn) =0 ifand Only if XiI=X2=X3=...=Xn1= Xn,
(AbS) A(Xl, X2, X3, . . ., Xn-1, Xn) < b[A(Xl, X1, X1, « . ., (Xl)n-l, a)
+ A(Xz, X2, X2, . . ., (Xz)n.l, a)
+ A(X3, X3, X3, . . ., (Xg)n.l, a)
+ A(Xn-l, Xn-1y Xn-1y « « oy (Xn»l)n-l, a)
+ A(Xn, Xny Xn, « « -, Xn)ne1, Q)]

The pair (X, A) is called an A,-metric space.

Note: Ap-metric space is more general than A-metric space. Moreover, A-metric space is a special case of Ay,-metric space with b
=1

Example 2.3. [7] Let X = [1, + o). Define Ap : X "— [0, + ) by

Ao(Xe, X2, X3, - -+ Xty Xn) = D 3| —xj|2
i=1 i<j

forall x; € X,i=1,2,... ,n.
Then (X, Ap) is an A,-metric space withb =2 > 1.
The concept of complex valued metric space was initiated by Azam et al. [1]. Let C be the set of complex numbers and z;, 2, € C.
Define a partial order < on C as follows:
z: 2 2z if and only if Re(z1) < Re(z2) and Im(zy) < Im(zo).
It follows that z; < z, if one of the following conditions is satisfied:
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(Cy) Re(z1) = Re(z2) and Im(z1) = Im(z2),

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2),

(Cy) Re(z1) = Re(z2) and Im(z1) < Im(z2),

(Co) Re(z1) < Re(z2) and Im(z1) < Im(z2).

Particularly, we write z; 5 2, if 1 # 2, and one of (Cy), (Cs) and (Ca) is satisfied and we write
21 < 2z if only (Cy) is satisfied. The following statements hold:

1. Ifa,be Rwitha<b,thenaz<bzforall0 SzeC.
2. Ifz1 S 25, thenazs S azxforall0 <aeR.

3. If 0 < 21 2 25, then |z1] < |22).

4, If 0 < 21 3 25, then |z1] < |z2].

5. If z2 2 zand 2o < z3, then z; < z3.

Definition 2.4. [1] Let X be a nonempty set. A function d : XxX — C is called a complex valued metric on X if for all x,y,z e X,

the following conditions are satisfied:

()03 d(xy)and d(x,y) =0 ifandonly if x=y;

(i) d(x,y) = d(y.x) ;

(i) d(x,y) 2 d(x,z) + d(zy).

The pair (X, d) is called a complex valued metric space.

Definition 2.5. [5] Let X be a nonempty set and let s > 1 be a given real number. A function d : XxX — C is called a complex
valued b-metric on X if for all x,y,z e X, the following conditions are satisfied :

()0 d(x,y)and d(x,y) =0 ifandonly if x=y;

(i) d(x,y) = d(y.x) ;

(i) d(x,y) = s[d(x,z) + d(z.y)].

The pair (X, d) is called a complex valued b-metric space.

Definition 2.6. [11] Let X be a nonempty set and C the set of all complex numbers. A complex valued S-metric on X is a function
S: X% C that satisfies the following conditions, for all x, y, z, t € X :

(1) 0 = S(x, Y, 2),

(i) S(x,y,z)=0ifandonly if x=y =2z,

(iii) S(x, v, 2) S S(x, x, t) + S(y, y, t) + S(z, z, 1).

The pair (X, S) is called a complex valued S-metric space.

Definition 2.7. [10] Let X be a nonempty set and b > 1 be a given real number. Suppose that a mapping S : X 3 — C satisfies:
(CSpl): 0<S(x,y,2)forall x,y,ze Xwithx#y#z#x,

(CSh2): S(x,y,2) =0 ifand only if x=y =2,

(CSp3): S(x, x,¥) =S(y, y, x) forall x, y € X,

(CSpd): S(x,V,z) S b(S(x, x,a) +S(y,y,a) +S(z,z,a)) forall x,y, z,a € X.

Then, S is called a complex valued Sy-metric on X and (X, S) is called a complex valued S,-metric space.

Definition 2.8. [4] Let X be a nonempty set and b = 1 be a given real number. Suppose that a mapping A : X " — C satisfies for
allxi,aeX,i=1,2,...,n:

(CALL) 0= A(X1, X2, -+« Xn),

(CA2) A(X1,X2,...,X) =0 X1=X2=...= Xy,

(CAbS) A(Xl, X2, « v oy Xn-1, Xn) =< b[A(Xl, X1y oo vy (Xl)n-L a)
+ A(X2, X2, . . ., (X2)n-1, @)
+ A(Xn-1, X1y -+ -y (Xn-1)n-1, @)
+ A(Xn, Xn, - - -, (Xn)n-1, Q)]

Then A is called a complex valued Ap-metric on X and the pair (X, A) is called a complex valued Ap,-metric space.

Example 2.9. [4] Let X = R and A: X" — C be such that

A(X1, X2, « « .+, Xn-1, Xn) = (@ + I8) Ax(X1, X2, . . ., Xn-1, Xn),

where a, £ = 0 are constants and A« is an A,-metric on X. Then A is a complex valued Ap-metric on X. As a particular case, we
have the following example of complex valued Ap-metric on X.

The mapping A : X 2 —» C defined by A(X1, X2, X3) = €'¢(|x1—xX2? + |x1—X3* + [x2—X3]?), O € [O, %} is a complex valued A,-metric

onX=Rwithb=2andn=3.
Definition 2.10. [4] A complex valued Ay-metric space (X, A) is said to be symmetric if
A(Xl, X1, ..., (Xl)n—l, Xz): A(Xz, X2, ...y (Xz)n.l, X1)
for all x4, X2 € X.
Definition 2.11. [4] Let (X, A) be a complex valued A,-metric space.
(i) A sequence {xp} in X is said to be complex valued As-convergent to x if for every a € C with 0 < a, there exists k € N

such that A(Xp, . . ., Xp, X) < @aorA(x, ..., X, Xp) < aforall p=>kand is denoted by lim b Xp =X OF Xp— X @SP — 0.

(i) A sequence {Xp} in X is called complex valued Ay,-Cauchy if for every a € C with 0 < a, there exists k € N such that A(xy,
..., Xp, Xq) < aforeachp,q = k.

(iii) If every complex valued A,-Cauchy sequence is complex valued Ap-convergent in X, then (X, A) is said to be complex
valued A,-complete.

Lemma 2.12. [4] Let (X, A) be a complex valued A,-metric space and let {xp} be a sequence in X. Then {x,} is complex valued

Ap-convergent to x if and only if |JA(Xp, . . ., Xp, X)| —=0asp — wor [A(X, ..., X, Xp)] =0 asp — .
Lemma 2.13. [4] Let (X, A) be a complex valued Ap-metric space and {xp} be a sequence in X. Then {x,} is complex valued Ay-
Cauchy sequence if and only if |A(Xp, . . ., Xp, Xg)] = 0 asp,q —> .
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Lemma 2.14. [4] Let (X, A) be a complex valued Ap,-metric space. Then A(X, X, ..., X, ¥) S DAY, Y, ...,y,x), forallx,y €X.
Theorem 2.15. [10] Let (X, S) be a complete complex valued Sp-metric space and f, g be two self mappings on X satisfying the
following contraction condition:

S(fx, X, gy) S aS(x,x,y)+ ASCux, MS(y. ¥, 6y)
b(2S(x, %, 9y) +S(y, Yy, )+ S(x,X,y))

for all x, y € X such thatx =y, S(x, X, gy) + S(y, y, fX) + S(x, x, y) #0 where &, are two nonnegative real numbers with
a+ B <1 or S(x, fx, gy)=0if S(x, x, gy) + S(y, y, X) + S(x, X, y) = 0. Then f, g have a unique common fixed point.
Note:In the statement of the above theorem, we have some observations. If x #y, then S(x, X, y) # 0 and so S(x, X, gy) + S(y, Y, fx)
+ S(x, X, y) #0. Therefore the condition S(x, X, gy) + S(y, y, fX) + S(x, X, y¥) # 0 is not necessary. Also in the second case, if S(x, X,
ay) + Sy, y, ) + S(x, x, y) = 0, then S(x, X, y) =0, S(y, y, fx) = 0 and S(x, x, gy) = 0. And this implies that fx = gy =x =y and
therefore S(fx, fx, gy)= 0. Thus the second case is an obvious implication and not a condition.

3. Main Result

We now state and prove our main result.

Our Theorem is a generalization of Theorem 2.15. with some modifications in the light of the Note above. Also, to compensate
for the symmetry condition in complex valued Sp-metric space which is required in the proof of the Theorem, we make our space
symmetric.

Theorem 3.1. Let (X, A) be a complete complex valued A,-metric space which is symmetric and f, g be two self mappings on X
satisfying the following contraction condition

BAXX, ..., X )AWY, Y, ..., Y, 0Y) )
bI[(n—DAX,X, ..., % 9Y)+ ALY, Y, -, Y, DO+ A X, ..., X Y)]
for all x, yeX such that x = y, where ¢,  are two nonnegative real numbers with b(«+ ) <1. Then f, g have a unique
common fixed point in X.
Proof: Let xo € X be an arbitrary point. And, let a sequence {Xp} in X be defined as x,,,, = fx,, and x

A, X, .1 gy) S @ AGX, L X Y) +

= gX2p+l i p = 01 11 21

2p+2
3, .... And we suppose that Xap# Xop+1 , Xop+17# x2p+2 fOr any p = 0. Then, from (1) we have
A(Xop+1, Xop+1, -+« Xop+1, X2p+2) = A(fXop, TX2p, . . ., TXop, OXop+1)
= aA(xzp,xzp, e ,xzp,x2p+1)+
ﬁA( 2p? Zp' s ’X2p’ fXZp)A(X2p+l'X2p+l’ s 7X2p+1ng2p+1)
|:(n 1)A( 2p? Zp’ R 2p’gx2p+1)+A(X2p+l’X2p+1’ B 2p+l’ fX )+A( 2p? Zp‘ T ’XZp’X2p+1):|
—aA( 20 2p,...,xzp,x2p+1)+
ﬂA( 2p? 2p‘ R ’X2p’X2p+1)A(X2p+1‘X2p+1’ T ’X2p+1’x2p+2)
|:(n 1)A( 2p! 2pv v lXZp’ 2p+2)+A( 2p? Zp’ e 'XZp’X2p+1):|
:>|A(X2p+l’x2p+1’ T ’X2p+1’x2p+2 |<a|A 2p! 2p’ v Zp' 2p+l) +
ﬂ|A 2p? 2p"' 2p' 2p+1)|A 2p+11 2p+l""'x2p+l'x2p+2) (2)
b|(n 1)A 201 Xopr - e xzp,x2p+2)+A( 2ps zp,...,XZp,X2p+1)
By the symmetry of X and CA,3, we have
‘A(X2p+1’X2p+1’ o Xopai Xapin ‘:‘A Xops21 Xopezs - - - ’X2p+2’x2p+l)
<b|(n 1)A 2p+2! 2p+2' ree ’X2p+2'x2p)+A(X2p+l’X2p+l’ ree 'X2p+1’x2p)|
_b|(n l)A 21 Xaps -+ ,xzp,x2p+2)+A(x2p,x2p, e ,xzp,xzpﬂ)
Therefore, from (2) we have
|A 2p+11 2p+1’ v ’X2p+l'X2p+2) < a|A(X2p’XZp’ s ’XZp'XZp+l)
+,B|A Xops Xops « - - ,xzp,xzpﬂ)
=(a+p |A ap zp,...,sz,X2p+1) (3)
Similarly, using the symmetry of X, we get
|A(X2p+2’x2p+2’ e ’X2p+2’x2p+3) S(a+ﬂ)|A(X2p+l’X2p+l’ e 'X2p+1’x2p+2)| (4)

Combining (3) and (4),we get
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|A(xp,xp,...,xp, - <k|A - pl,...,xpfl,xp)| forall pe N, where k:a+ﬂ<%<1. (5)
By repeatedly applylng (5), we get
|A DX X, X <k|A oy p_l,...,xp_l,xp)|
<k2|A o2 pz,---,Xp,zlxp,1)|
<KPJA(Xg Xg -+ 2 %0 % )|
Thus forany p<q, p, g€ N, we have
|A . p,...,xp,xq)|<(n 1)b|A DXy X X +b|A - p+1,...,xp+1,xq)|
<b(n- 1)|A o X o2 Xpu Xy )| +07 (= 1)|A bt p+1,...,xp+l,xp+2)|
+... +b" pl(n—1)|A(xq A P 2,qu)+bq "‘1|A(xq4,xqfl,...,xqfl,xq)|
<b(n- 1)|A o Xoy e xp,xp+1)+b (n— 1)|A bt p+1,...,xp+1,xp+2)|
C+bP(n- 1)|A Xqoo1 Xqoor oo 1 Xq 2,xq_l)

+b"? (n- 1|A o Xggr e X x)|

1 Ag-11 g

<(=1)[bk® +b°Kk" 4+ +b PRI 4D PR | A (X Xy - Xgr X )|

< (n=D)[ (bk)” =+ (Bk)" .+ (k) (k)™ [ A (g X, - %%

(n-1)(bk)®
SW|A(XO,XO, . ,Xo,X1)|

—1)(bk)®
:>|A o ID,...,xp,xq)| %|A(XO,XO,...,XO,X1)|—>O as p,q— .

Hence {xp} is a complex valued Ap-Cauchy sequence.
Since X is complete, the sequence {xp} converges to some u € X. We show that u is the uniqgue common fixed point of f and g.

Let us assume that f (u)=u. Then |A(fu, fu,..., fu,u)>0.

Now we have
A(fu, fu, ..., fu,u) S (n-DbA(fu, fu, ..., fu,x,, ,) +bAU,U, ... U, X;,.,)

=(n=DbA(fu, fu, ..., fu,gx,,,) +bA(UU, ..., U, X,,.,)

S (n=DbaA(u,u, ... ,U,X,,.,)
. (N=DbBAU,U, ..., u, FUYAX, 1 Xopias -+« Xopias Popar)

b[(n—l) A(u,u, ... ,u,gx2p+1)+A(x2p+1,x2p+l, ce X, fU)+ AU, ,xzpﬂ)}
+bA(u,u, ,u,x2p+2)

= |A(fu, fu, ..., fu,u)| < (n —1)ba|A(u,u, U Xy )
(N=DBIAUU, ..U, )| A o1 Xapoas - -+ Xopits Xap.2)

|(n—1) AU, U X 0) + A Xopars + - -0 Xgpags TU)+ AU, L., U Xy )

+b|A(u,u, - ,u,x2p+2)

—0 as p—ooo.
This is a contradiction to our assumption about A( fu, fu, ..., fu,u).
Therefore, we must have fu = u. Similarly we can show that gu = u. Therefore, u is a common fixed point of f and g.
And to show the uniqueness of the common fixed point of f and g, let ve X be another common fixed point of f and g. And let us
assume that u #Vv.
Then we have
A(u,u, ... ,u,v)=A(fu, fu,..., fu,gv)
LA(U,U, ...,u, TU)A(V,V, ..., ,v,QV)

SaA(u,u, ..., uv)+
b[(N-DA®U,U, ... ,u,gv)+AV,V,...,v, fu)+A(,u,...,uVv)]
=aA(U,u,...,u,v)
=|AUU, ...,uV)|[ < a|Auu, ... u V)| <|Auu, ... ,u,V)|.

This is a contradiction. Therefore, we must have u = v.

Hence, f and g have a unique common fixed point.

Corollary 3.2. Let (X, A) be a complete complex valued Ap,-metric space which is symmetric and f be a self mapping on X
satisfying the following contraction condition
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LAX, ..., X AW, Y, ... Y, 1Y)
b[(n=DAC,X, ... . %, W)+ AW, Y, ..., Y, )+ ACGX, ..., X Y)]
for all x, yeX such that X # Yy, where ¢, 8 are two nonnegative real numbers with b(« + ) <1. Then f has a unique fixed point
in X.
Proof: Follows from the proof of Theorem 3.1. by taking g = f.
Corollary 3.3. Let (X, A) be a complete complex valued Ap,-metric space which is symmetric and f be a self mapping on X
satisfying for some positive integer m, the following contraction condition

BAX, ..., X T™)AY, Y, ...,y TMY)
b[(n=DAXX, ... X% f"Y)+AW, Y, ..., Y, F™X)+ A X, ..., % V)]
for all x, yeX such that X # y , where ¢, 8 are two nonnegative real numbers with b(c« + ) <1. Then f has a unique fixed point
in X.
Proof: From Corollary 3.2., we have f™ has a unique fixed point u € X. And we have f(f "u) = fu i.e. f™(fu) = fu, which means

AP, X, .. X TY) S AKX, - X Y) +

A% F™, ., 7% FTY) S A X, . X Y) +

that fu is a fixed point of ™. And the uniqueness of the fixed point of f ™ implies f(u) = u. Therefore, u is a fixed point of f.
Further to show the uniqueness of the fixed point of f we easily see that a fixed point of f is also a fixed point of ™. And the

uniqueness of the fixed point of f™ implies the fixed point of f is also unique.
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